@article{delaunay:hal-05449367,title={Modeling and Parameter Estimation of Tumor Spheroids from Bottom-View Imaging: Beyond the Spherical Assumption},author={Delaunay, Tiphaine and Laanani, Faiza and Pechtimaldjian, Léa and Oucherif, Sandra and Etchegaray, Christèle and Moisan, François and Collin, Annabelle},url={https://hal.science/hal-05449367},year={2026},}
2025
Journal
Mathematical analysis of an observer for solving inverse source wave problem
@article{delaunay2025mathematical,title={Mathematical analysis of an observer for solving inverse source wave problem},author={Delaunay, Tiphaine and Imperiale, Sébastien and Moireau, Philippe},year={2025},journal={Inverse problem and imaging},doi={10.3934/ipi.2025043},}
Journal
Solving inverse source wave problem -from carleman estimates to observer design
@article{delaunay2025solving,title={Solving inverse source wave problem -from carleman estimates to observer design},author={Boulakia, Muriel and {de Buhan}, Maya and Delaunay, Tiphaine and Imperiale, Sébastien and Moireau, Philippe},year={2025},journal={Mathematical Control and Related Fields},doi={10.3934/mcrf.2025007},}
2024
Journal
Uniform boundary stabilization of a high-order finite element space discretization of the 1-d wave equation
@article{delaunay2024uniform,title={Uniform boundary stabilization of a high-order finite element space discretization of the 1-d wave equation},author={Delaunay, Tiphaine and Imperiale, Sébastien and Moireau, Philippe},year={2024},journal={Numerische Mathematik},doi={10.1007/s00211-024-01440-9},}
2023
PhD thesis
Adaptative observers for wave equations and associated discretizations: formulations and analysis
@phdthesis{delaunay2023adaptative,title={Adaptative observers for wave equations and associated discretizations: formulations and analysis},author={Delaunay, Tiphaine},year={2023},school={Institut Polytechnique de Paris},}